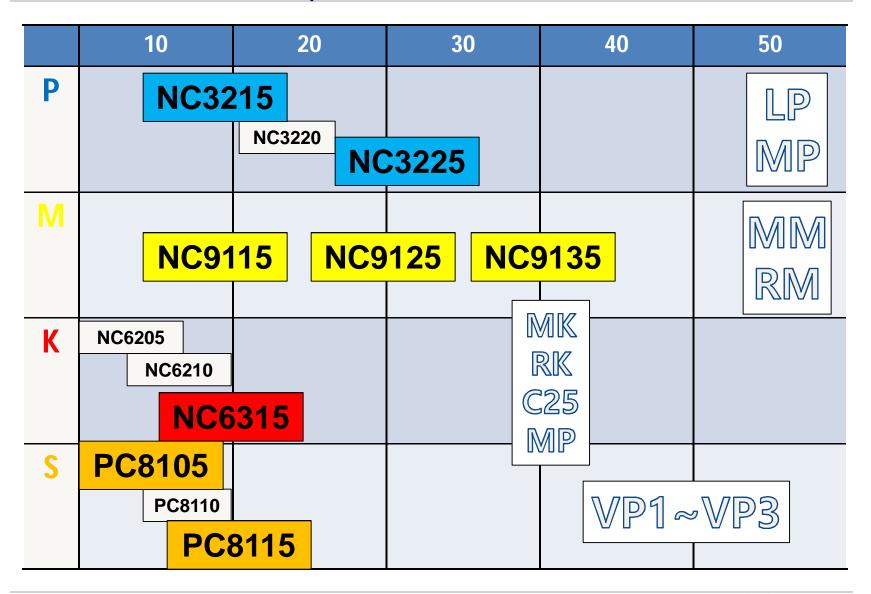
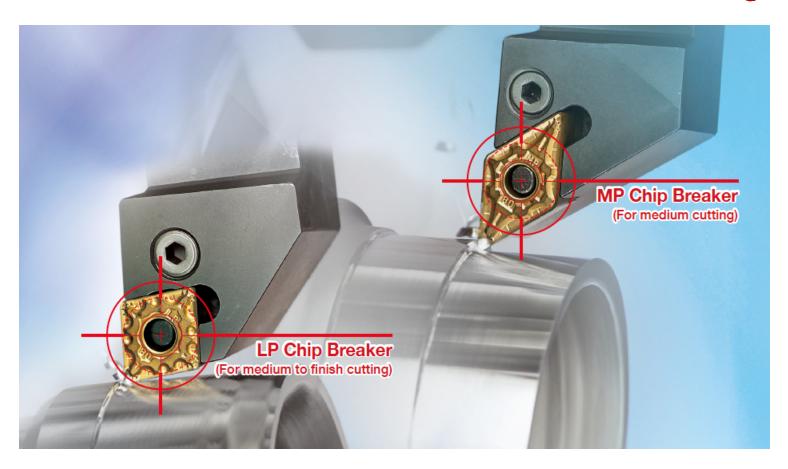
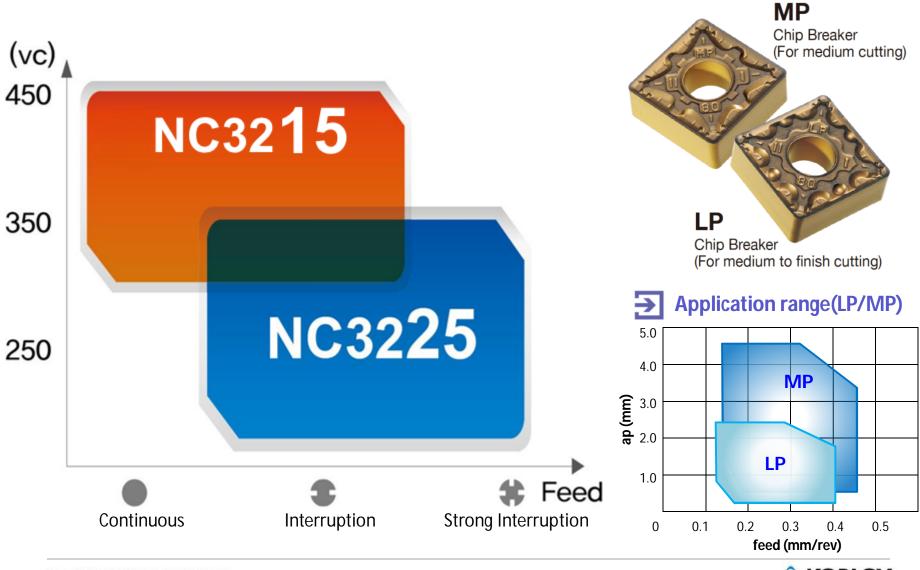
ISO TURNING New Grades and ChiPbreakers



SUMMARY

GRADES / PRODUCTS	APPLICATION	REMARKS
NC3215 & NC3225	TURNING	STEEL -P15 , P25
NC9115, NC9125 & NC9135	TURNING	STAINLESS STEEL M15, M25, M35
PC8105 & PC8115	TURNING	SUPER ALLOYS S05, S15
CC1500 & CC2500	TURNING	COATED CERMET P10, P20
NC6315	TURNING	CAST IRON –K15

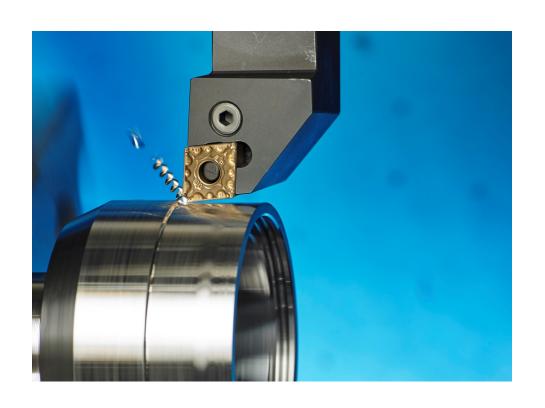

New Grades and Chipbreakers



NC3215 & NC3225

New High-Performance CVD Grades for Turning

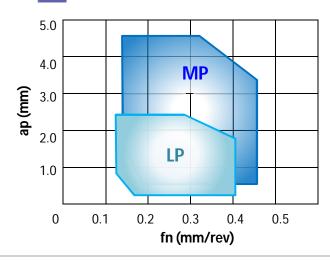
NC3215 & NC3225 : Introduction



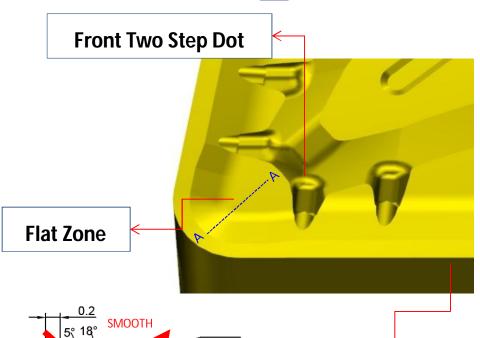
NC3215 & NC3225 : Key Features

Development Concept Existing Situation Effect New coating Reduced flaking Unstable tool life NEW Flaking Less Flaking Built-up edge Less built-up edge Previous coating High wear resistance Wear resistance Less wear on rake surface Wear on rake surface Severe V_B wear Little V_B wear

LP & MP CHIP BREAKER



LP & MP Chip Breaker: Introduction



→ Cutting Range(LP/MP)

SECTION A-A

Cutting Range	C/B	ap (mm)	fn (mm/rev)
Medium to Finishing	LP	0.3 ~ 2.5	0.15 ~ 0.4
Medium	MP	0.5 ~ 4.5	0.15 ~ 0.45

Variable Land

LP & MP Chip Breaker: Key Features

Existing Situation Development Concept Effect ■ 3D Dot Design ■ Cutting force decreased ■ Field Test factors **■** Cutting Conditions **Cutting load decrease 20%** fn=0.35mm/rev fn=0.25mm/rev ■ Tool Life improved [MP] [LP] **Chip Evacuation Improved Tool Life improvement 35% Cutting load decreased** fn=0.35mm/rev Tool Life1/3 [Competitor] [MP, LP] [Competitor] MP-NC3225

LP, MP Chip Breaker

Comparison for chip breakers and grades to competitors

KOR	RLOR	KYO	CERA	TAEG	UTEC	MITSU	JBISHI	SAN	DVIK
Breaker	Grade	Breaker	Grade	Breaker	Grade	Breaker	Grade	Breaker	Grade
	NC5330		CA5535 CA530		TT8135		UE6035		GC4235 GC4335
MP	NC3225	PS PG	CA5525 CA525	MT PC	TT8125	MA MP	UE6020 MC6025	PM	GC4215 GC4325
	NC3215		CA5515 CA515		TT8115		UE6110 MC6015		GC4215 GC4315
	NC5330		CA5535 CA530		TT8135		UE6035		GC4235 GC4335
LP	NC3225	CQ PQ	CA5525 CA525	MC FC	TT8125	SA LP	UE6020 MC6025	PF	GC4215 GC4325
	NC3215		CA5515 CA515		TT8115		UE6110 MC6015		GC4215 GC4315

LP & MP Chip Breaker : Field Test

[Field Test-3]

Insert : CNMG120412-MP (NC3215) Material : 1020 − Carbon Steel Workpiece : Engine Parts (Nipple)

Cutting Conditions: vc = 250~380(m/min),

 $fn = 0.20 \sim 0.30 (mm/rev)$ $ap = 1.5 \sim 2.0 mm$, wet

MP / NC3215	180ea/edge
Competitor / P15	150ea/edge

- •Smooth Chip Evacuation, Stable Tool Life
- Tool life increased 120%

[Field Test-4]

- Insert : CNMG120408-MP (NC3225)
- Material: 5140 Hot Forged Steel
- **■** Workpiece : **Steering System(Wheel Bearing)**
- Cutting Conditions : vc = 230(m/min) fn = 0.3(mm/rev)

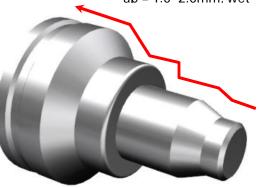
ap = $0.5 \sim 1.5$ mm, wet

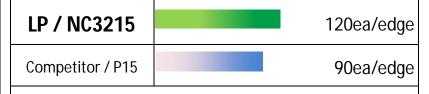
- Stable Tool Life on interrupted machining
- Tool life increased120%

LP & MP Chip Breaker : Field Test

[Field Test-5]

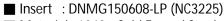
■ Holder: DDJNR2525-P15


■ Insert : DNMG150612-LP (NC3215)


■ Material : 1045 - Cold Forged Steel■ Workpiece : Steering System(BJ Case)

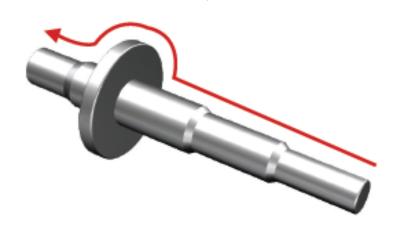
■ Cutting Conditions: vc = 250(m/min),

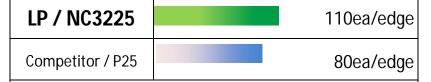
 $fn = 0.25 \sim 0.35 (mm/rev)$


ap = $1.0 \sim 2.0$ mm, wet

- •Better Chip Evacuation. Lower Cutting Force
- •Tool life increased 130%

[Field Test-6]

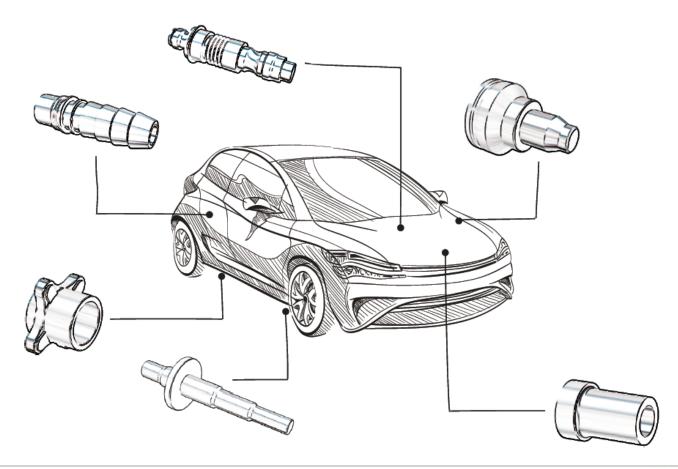

■ Material: 1040 - Cold Forged Steel


■ Workpiece : **Mission part (Input Shaft)**

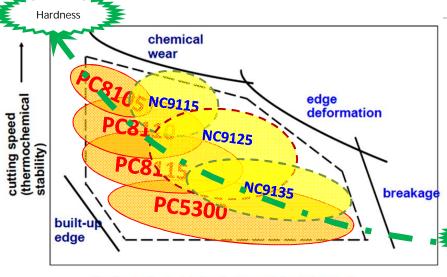
■ Cutting Conditions : vc = 240(m/min)

fn = 0.35(mm/rev)

ap = 1.5.0mm, wet



- Stable in both interrupted and continuous machining
- Tool life increased 130%

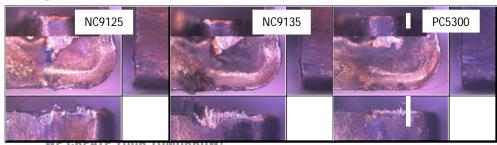

NC9115, NC9125 & NC9135

New CVD Turning Grade For Stainless steel

Introduction of NC9000 series

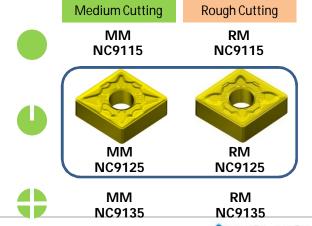

feed rate (mechanical strength/toughness)

Recommended Cutting condition


Grade	ISO	VC(m/min)
NC9115	M15	160-220
NC9125	M25	150-200
NC9135	M35	100-150

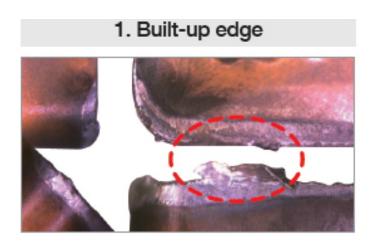
Арр	C/B	Ар	fn
Mid	MM	0.5~5.5(3.0)	0.12~0.45(0.25)
Rough	RM	2.0~6.0(3.0)	0.15~0.55(0.3)

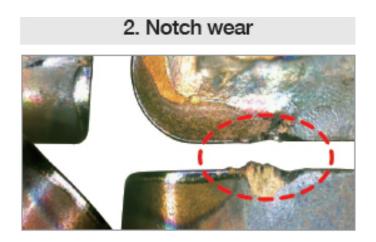
< Wear TEST, vc:200m/min>

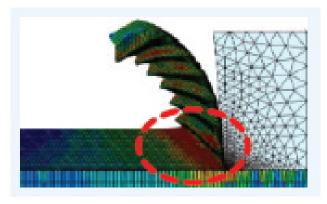


<Toughness Test, vc:150m/min>

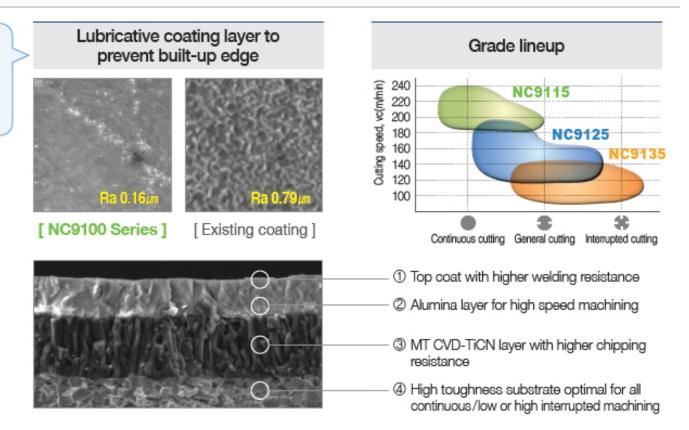
Application


Toughn

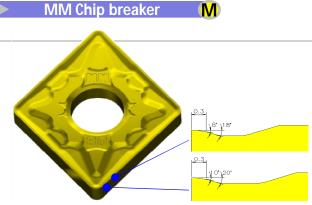


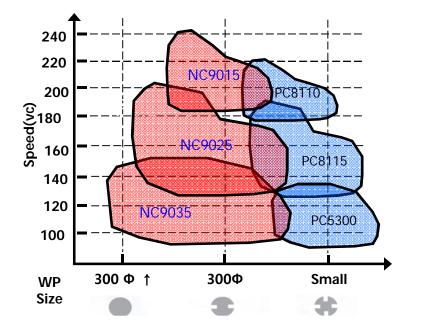

Common Problems while Machining Stainless Steel

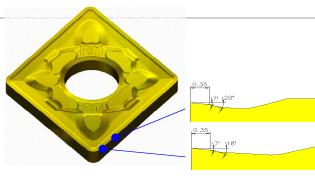
- 1. Sheared chips impact cutting edges repeatedly and cause edge damage.
- 2. Difficult chip breakage leads to built-up edge, work hardening, and promotes excessive notch wear.


Low heat conductivity in Stainless steel machining involves high cutting heat a nd shear chips. These get concentrated on the cutting edge

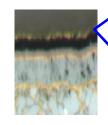
How to get rid of these problems with NC9000 series grade


 The NC9100 series shows improved surface finish compared to the existing coating film


- Excellent coating layer for medium/rough turning of stainless steel
- Optimized substrate for different cutting speeds, feeds, and degrees of interruption.


NC9000 Series & MM-RM Chip breaker

- 1st recommended Chip breaker
- Applied two step cutting land
- Wide chip pocket for chip evacuation



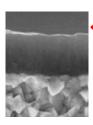
RM Chip breaker M

- For cutting roughing and interrupted condition
- Prevent burr in high speed
- Increasing tool life in high speed

CVD

X Al2O3 Coating

******Great Wear Resistance on upper surface


※Tip:

Big size W.P,

Heavy machining (Medium~Roughing,

High speed

PVD

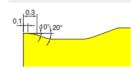
XTIAIN Coating

XGreat Wear resistance and Toughness on rake face

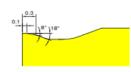
XTip:

Small size W.P,

Interrupted

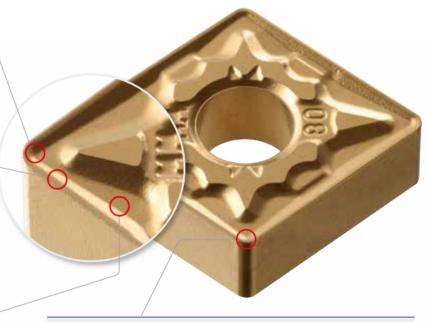

Low~Medium Speed

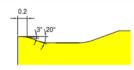
NC9000 series – MM Chip breaker


- It's dual land angle design allows for both sharp cutting performance and strong cutting edges , which promotes extended tool life and minimized cutting force and built-up edge.
- Wide chip pockets prevent chips from interrupting the minor cutting edges and instead lets the chips out of the cutting area.
- These chip breaker features help in preventing plastic deformation and excessive wear.

Variable Land

- Excellent chip control and sharp cutting at low depths of cut
- · Delays crater wear
- Prevents plastic deformation

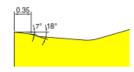

Dual Land


- Balance between requirements of sharp and tough cutting edges
- Sharp cutting edge for high speed machining
- Prevents chipping in interrupted machining

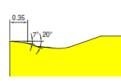
Wide Chip Pocket

- Stable chip evacuation at high speeds/feeds
- Improved surface finishes by reduced workpiece scratches caused by work-hardened chips at high depths of cut
- · Prevents built-up edge

Low Cutting Force at 100° corner

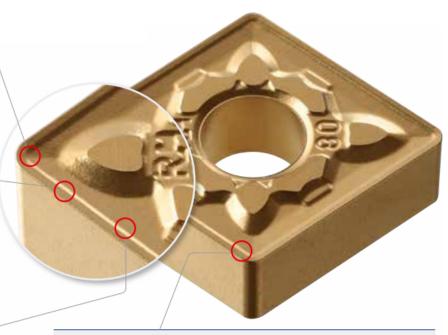

- 100° corner angle is recommended for roughing outer diameters and preventing burrs
- · Reduced cutting load for high feed machining

NC9000 series - RM Chip breaker


- The RM chip breaker for roughing is recommended in rough machining and in cases where burrs are an issue.
- It has a wide land and rake angle lowering cutting resistance.
- Cutting heats can flow around the gentle slope of rake surface and can be effectively dispersed and evacuated at high feeds and high depths of cut.

Variable Land

- Excellent chip control and sharp cutting at low depths of cut
- · Delays crater wear
- Prevents plastic deformation


Wide Land & Gentle Front Angle

- Sharp cutting edges and wide land reduce cutting force
- Reduced burrs
- Dispersed cutting load enables higher toughness

Stepped Design

- · Stepped design makes chip evacuation easier
- Smooth chip evacuation prevents plastic deformation

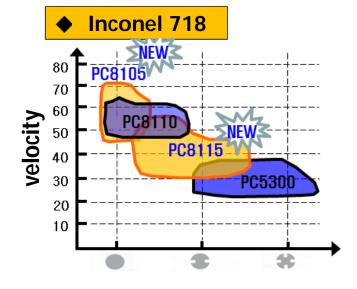
Low Cutting Force at 100° corner

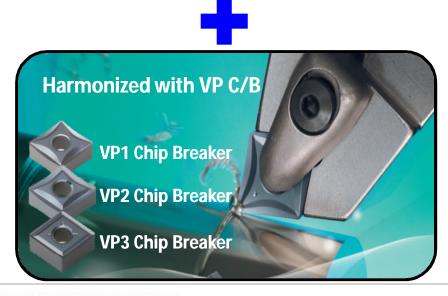
- 100° corner angle is recommended for roughing outer diameters and preventing notch wear
- Stepped design reduces cutting load

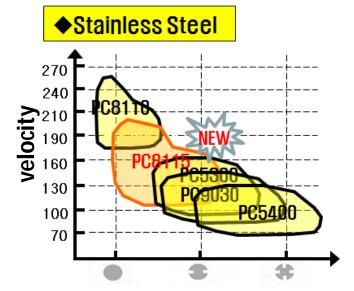
PC8105 & PC8115

New PVD coating for Turning operations with hard to cut materials

PC8105 & PC8115 : Introduction

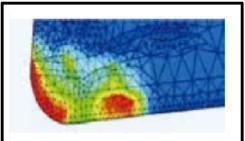

PC8105 & PC8115 with VP C/B


PC8105 (S05):

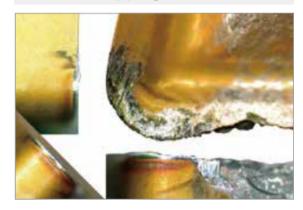

- *High speed
- *Continuous
- *Finishing

PC8115 (S15):

- *Medium
- *Interrupted



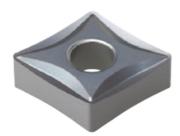
Problems in cutting hard to cut materials



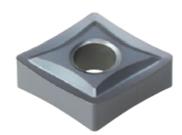
Hard-to-cut materials(Inconel, etc.) feature high hardness and low heat conductivity. This results in concentrated heat on cutting edges and thus rapid wear at a high temperature over 800°. In addition, thermal impact and work hardening cause involve chipping or breakage according to the depth of cut.

1. Severe wear

2. Chipping / fracture



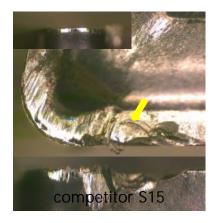
LESS


SHARP


- **■** High positive cutting Edge
- Recommended cutting conditions fn(mm/rev) = 0.05~0.2, ap(mm) = 0.1~1.5

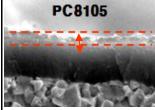
- High positive cutting Edge / side rake angle
- Recommended cutting conditions fn(mm/rev) = 0.1~0.4, ap(mm) = 0.5~4.5

- High positive cutting Edge with wide land
- Recommended cutting conditions fn(mm/rev) = 0.1~0.45, ap(mm) = 0.5~5.0

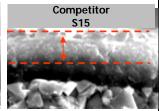

PC8105 & PC8115 : Key Features

Existing Situation

♦ HRSA in high speed

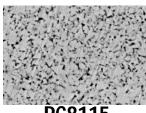


♦ HRSA, STS in high feed

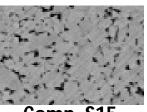


Development Concept

◆Superior PVD layer



heat treatment after 900 Celsius

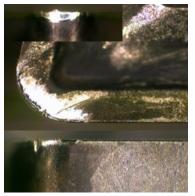


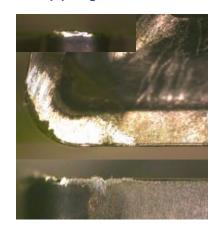
heat treatment after 900 Celsius

◆ Ultra fine structure tech

PC8115

Comp. S15


◆Specialized in HRSA


C/B designed with high positive angle

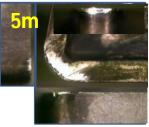
Effect

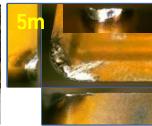
◆Superior wear & P.D

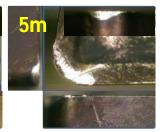
◆Anti chipping & fracture

PC8105 & PC8115 : Field Test

[Home Test]


- Holder: PCLNR2525-M12
- I/S: CNMG120408-VP3 PC8105
- W.P : Inconel718 (H_RC50)
- \blacksquare Cutting conditions: vc = 50(m/min), fn = 0.15(mm/rev)


ap = 0.5mm, wet


PC8105-VP3

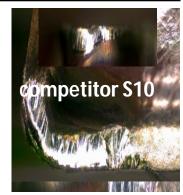
Competitor A

Competitor B

[Field Test]

- Holder: MTFNR2525-M16
- I/S: TNMG160408-VP3 PC8115
- W.P : Inconel625 (H_RC42)
- \blacksquare Cutting conditions : vc = 30(m/min), fn = 0.1(mm/rev)

ap = 1.5mm, wet


competitor S10

1 pcs

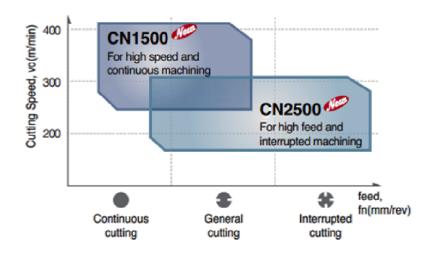
PC8115-VP3

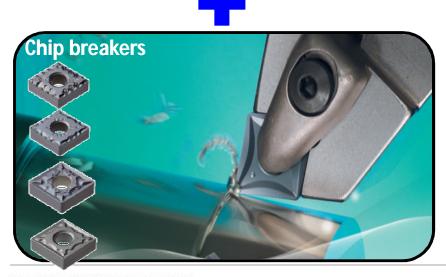
2 pcs

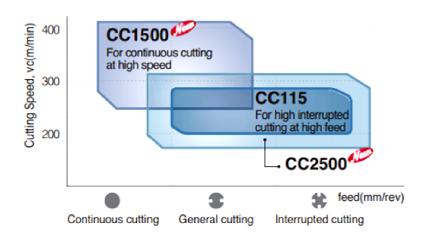
CC1500 & CC2500

New PVD coated Cermet grades

CC1500 & CC2500: Introduction


→ CC1500 & CC2500


CC1500 (P10)


- High speed
- Continuous

CC2500 (P20)

- High feed
- Interrupted
- For forged steel and sintered ferrous alloy

CC1500 & CC2500 : Key Features

Difference in crater wear

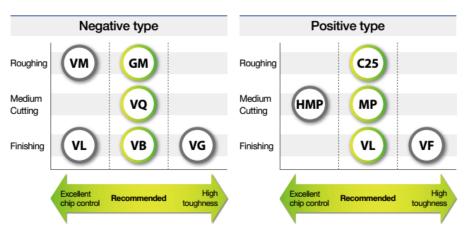
CC1500 Competitor Comparison of Wear [CC1500] [Competitor] Comparison of Surface Roughness

[Competitor]

Fracture tendencies

CC2500

Better wear resistance and fracture resistance can be seen in case of CC1500 and CC2500 respectively.



Competitor

[CC1500]

Compatible C/Bs with CC1500 and CC2500

Туре	Chip breaker	Machining type	Cutting edge	Features
	VL	Finishing	o € 0.1	Excellent chip control when machining tough materials such as low carbon steel, pipe, steel plate, etc. Improved chip control at low depth of cut
Negative	VB	Finishing	64	 Universal chip breaker with strong chip control at low depth of cut Excellent chip control on copying application and corner R machining
type	VQ	Medium cutting	0.23	Improved chip control with optimized cutting edge design for medium to finish cutting
	GM	Roughing	o.1	Excellent for interrupted and high feed machining with strong cutting edge
	VL	Finishing	5.1	 Improved chip control when machining low carbon steel, pipe, steel plate, etc.
Positive type	MP	Medium cutting	7 - 0.25	Special chip breaker geometry designed for various cutting conditions
	C25	Roughing	of 0.15	Strong cutting edge produces excellent cutting performance in interrupted cutting and cast iron machining

NC6315: K15 GRADE

New CVD Turning Grade For Cast Iron

Cast Iron application areas

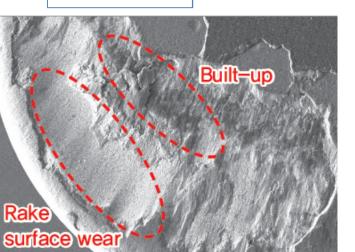
- -. Brake disk (FC_Grey Cast Iron)
- -. Differential case (FCD, Ductile Cast Iron)
- -. Knuckle and others (FCD, Ductile Cast Iron)

Competitor's

Company	MMC	TUNGALOY	GESAC
Geometry			
Grade	UC5115	T5115	GK5115

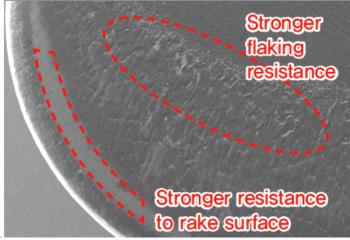
Weak points of NC6215

- -. Adhesion property of the Alumina layer is weak.
 - -> Peeling phenomenon (Tool life is low in case of FCD material in case of heavy interrupted cutting)
- Low wear resistance during high speed machining


Development background of NC6315

-. Improved toughness, chipping resistance from 80->100%, price remains the same

*. Disadvantage of the current tool

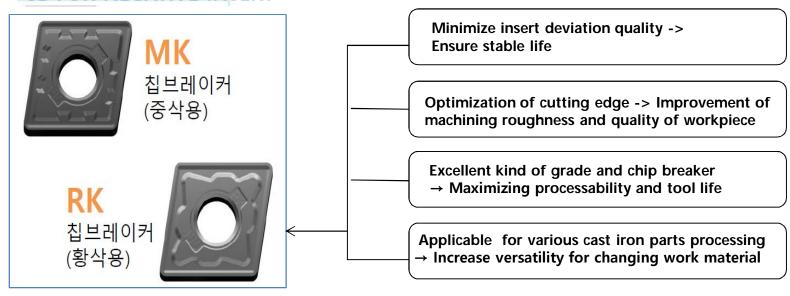

Crater wear

*. Improvement after

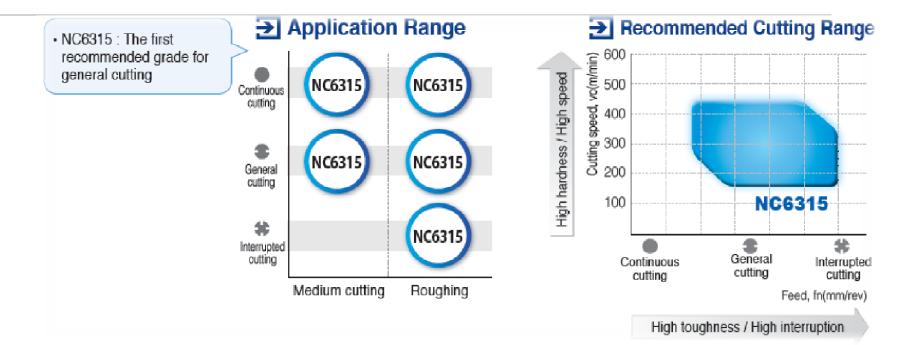
Rake

development Improved falking resistance

Flank wear


Excessive flank wear

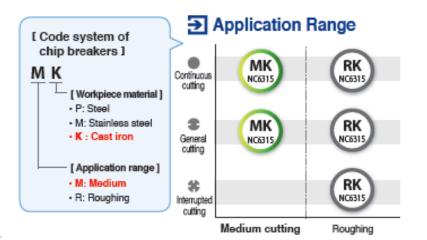
- Excellent wear resistance in highly interrupted cutting of ductile / gray cast iron at high speed over vc = 350m/min **Upgraded alumina coating** layer → Minimizes built-up edg
- Augmented tool life stability and wear resistance

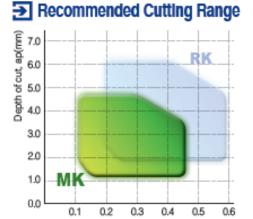

CB FOR NEGATIVE INSERT

CB FOR POSITIVE INSERT

MP	Medium Cutting to Finishing
C25	Roughing

Angle land




- Maximized wear resistance in continuous cutting
- · High quality results in surface finish

Wide supporting area

- Higher clamping stability
- Prevents chipping at vibrations during operation

APPLICATION AREAS

1. Brake disk

2. Diff. case

3. Knuckle

