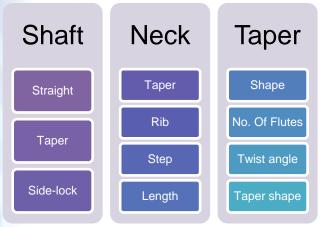
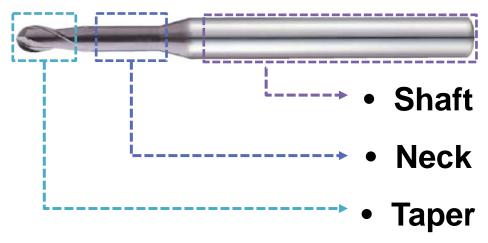
Introduction to KORLOY ENDMILLS

-1-

- Table of contents -

- Solid Endmill Understanding the tools
- Solid Endmill Line-Up (KORLOY item development and management)
 - H ENDMILL (High hardness machining)
 - Z ENDMILL (Premium Universal)
 - D ENDMILL (Machining Graphite, Non-ferrous material)
 - V ENDMILL (Irregular Helix Angle Endmill)
 - F ENDMILL (High feed)
 - C-Max (Machining of Copper and Non-ferrous material)
- Solid Endmill Line-Up (OEM items development and management)

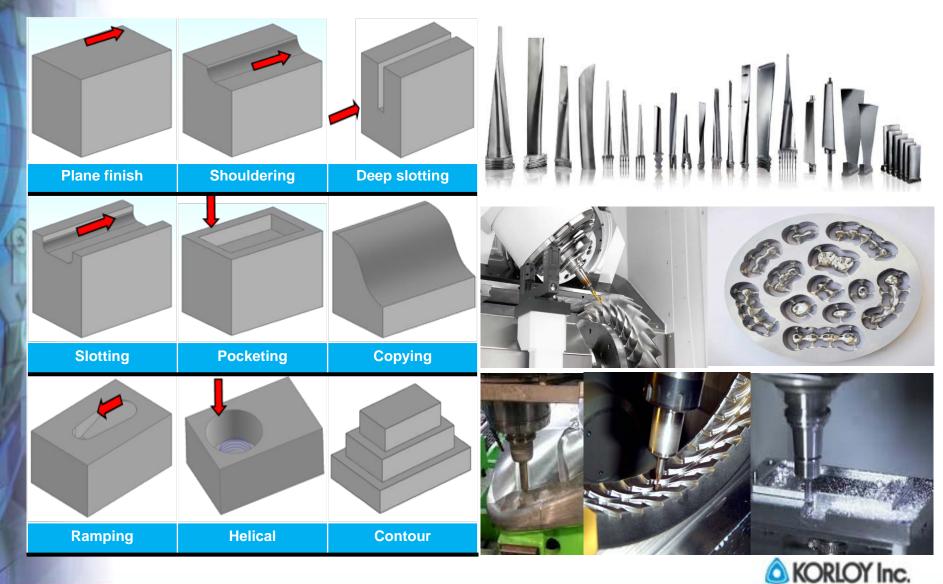

-2-


- -. I+ ENDMILL(Economic type for general purpose)
- -. A+ ENDMILL (Machining of Aluminum)
- -. S+ ENDMILL(Hard-to-cut material)
- -. R ENDMILL(Roughing process)

1. Understanding E/M Tools Classification

• E/D Shape Classification

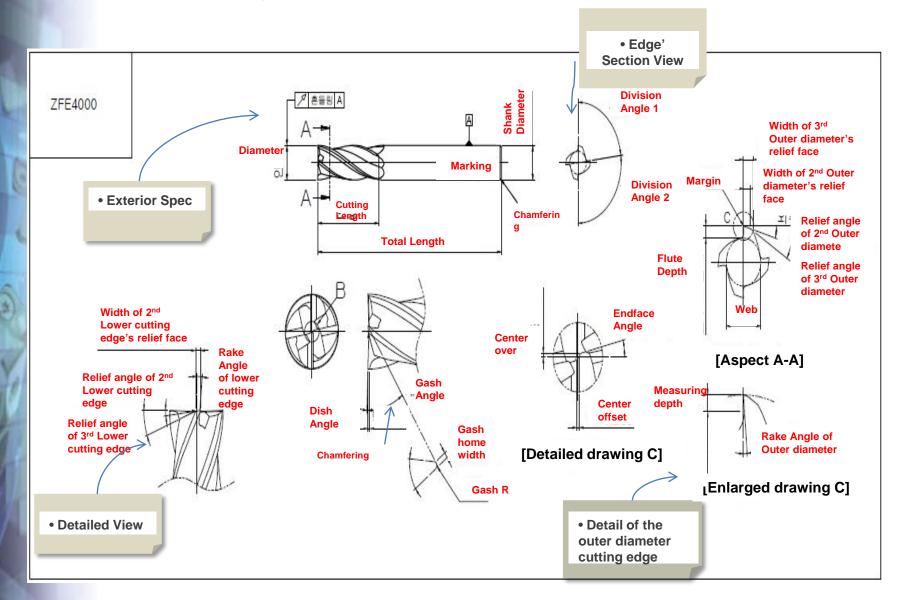
생산기술연구소 EDBM


KORLOY E/D Configuration

Series	Contents		
H ENDMILL	Machining mold of high hardness metal (SKD11, SKD61 heat treatment)		
Z ENDMILL, I+ ENDMILL, Z+ ENDMILL	Universal machining (Carbon steel less than HRc45, Alloy steel, STS, etc)		
S+ ENDMILL	Machining Difficult-to-cut materials, Stainless steels and nonferrous metals		
A+ ENDMILL	Machining of Aluminum		
C-MAX	Machining of Copper, Copper alloys		
D ENDMILL	Machining of Graphite		
V ENDMILL	Inequal Indexing & Helix, high-efficient & high quality machining		
F ENDMILL	High efficiency/High feed machining (or difficult applications / small deep groove)		
	KORLOY Inc.		

-3-

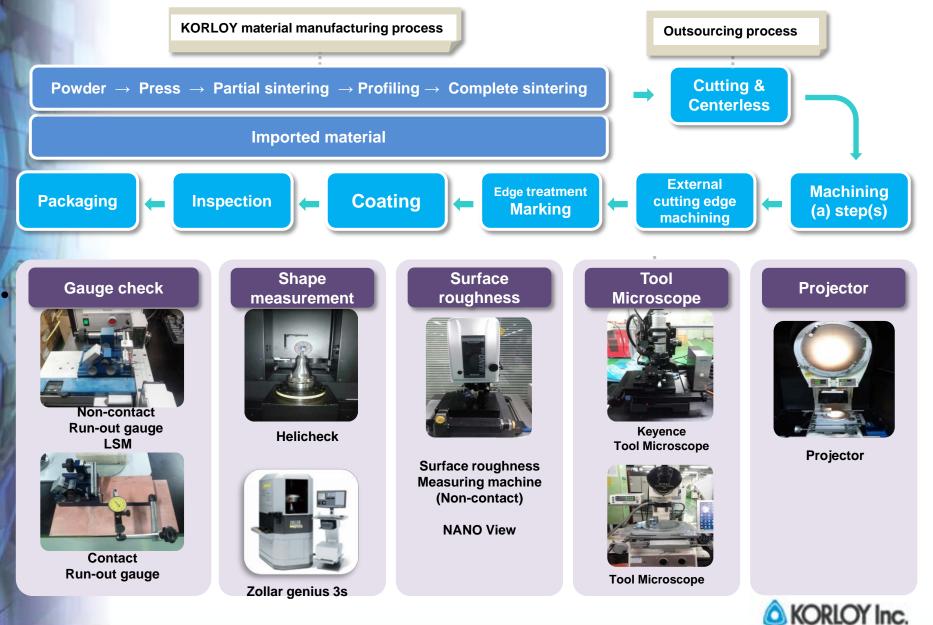
WE CREATE YOUR TOMORROW! 2. Understanding E/M tools – Tooling Method


- Mainly used for complicated shapes that requires small diameter machining
- Major Industries : Power Generators (Turbine Blades), aviation industry (engine/ turbine etc.), Medical industry(dental) Automobile parts (body mold, engine, chassis, tire mold etc.), Mobile phone mold, phone casings etc.

·4·

생산기술연구소 EDBM

3. Understanding E/M tools - Shape



-5-

4. E/M manufacturing process

KORLOY Manufacturing Process of Solid Endmills

-6-

Re 0(2010.02.18)

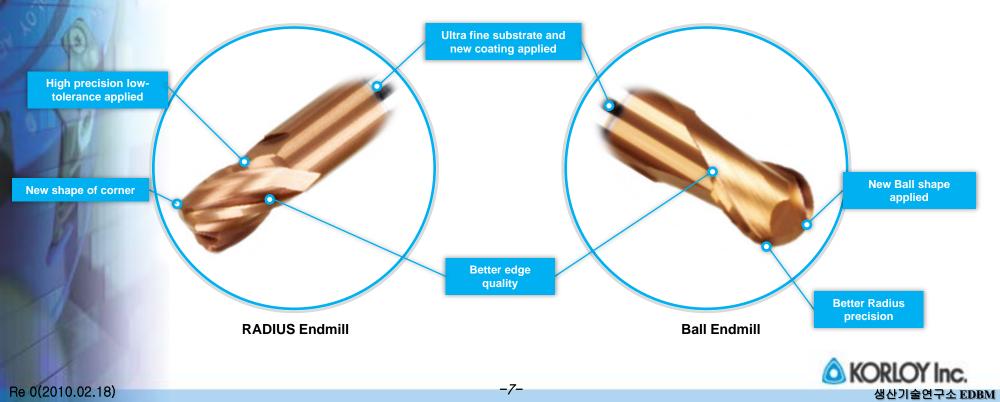
생산기술연구소 EDBM

H-ENDMILL KORLOY ENDMILL SERIES WE CREATE YOUR TOMORROW!

H-ENDMILL (Premium High hardened steel Endmill)

Features]

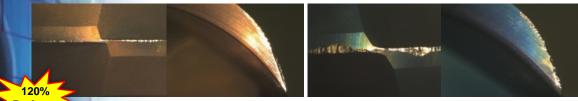
Shape: high precision tool made by extremely precise machines


- Special cutting edge design increases wear resistance and prolongs tool life
- Special cutting edge designed for better chipping reduces the cutting load on the edge

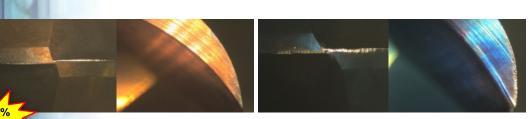
Coating material: Ultra fine substrate

- Provides high precision in high speed, high hardened materials machining
- Improved chipping and wear resistance for a better tool life

Coating: Proper CX grades for both dry and wet conditions


- New coating technology improves anti-corrosion performance and wear resistance
- Excellent tool life in high hardened materials up to HrC45

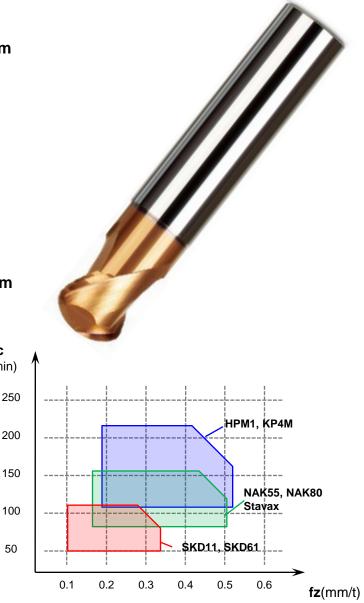
Product Performance


Cutting conditions : vc = 200m/min, fz = 0.1mm/t, ap=0.8mm, ae=0.1mm Workpiece : SKD11 Tool used: H-ENDMILL SERIES / PBE080-100

KORLOY

Competitor A

Cutting condition : vc = 250m/min, fz = 0.125mm/t, ap=0.1mm, ae=0.2mm Workpiece : STAVAX Tool used : H-ENDMILL SERIES / PBE2080-100


Competitor A

Line-Up

KORLOY

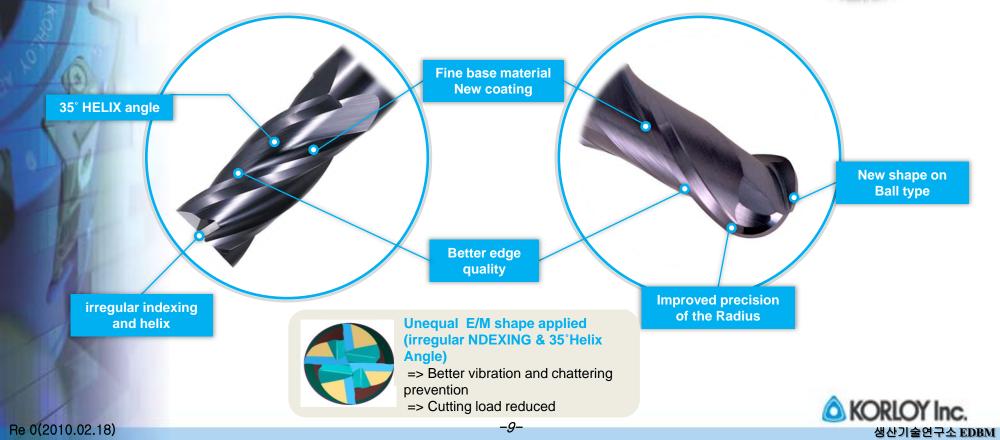
Radius (Standard) : Φ0.5 ~ Φ12.0 Ball (Standard) : Φ0.5 ~ Φ12.0 Flat (Standard): Φ0.5 ~ Φ12.0

KORLOY Solid Endmil Series

* Application area

vc (m/min)

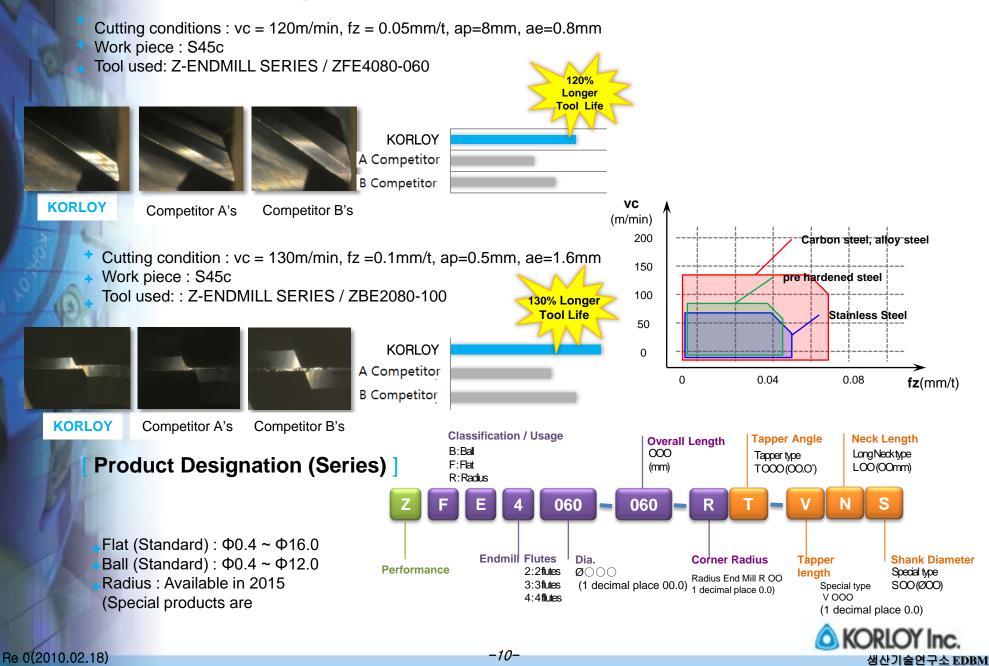
50


KORLOY Solid Endmil Series

-ENDMILL (Premium Universal Endmill)

- Fine base material, New coating (AICrN) applied, Better wear and chipping resistance
- New shape applied for better performance and wear resistance
- Applicable to various materials less than HrC 45 such as Steel, Alloy Steel, Cast iron, etc
- Better edge quality for chipping prevention and assuring long-term, stable performances

Features]


Flat type : irregular indexing and helix applied to minimize vibration and offer better performances, 35° Helix angle applied to improve wear resistance and machining performances Radius type : Radius part wear resistance and precision improved Ball type : New shape for ball part, Excellent wear resistance, Better performances

KORLOY Solid Endmil Series

Z-Endmill K RLOY ENDMILL SERIE WE CREATE YOUR TOMORROW!

Product Performance

NEV

KORLOY Solid Endmil Series

Superior

Layer

Excellent ear resistanc

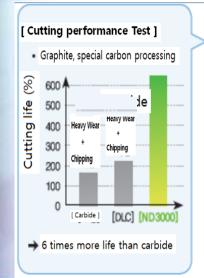
DY Inc.

생산기술연구소 EDBM

We GREATE YOUR TOMORROW! D-ENDMILL (Graphite Cutting, Diamond Coating Endmill)

[Product Feature Features and Uses]

Tangential cutting edge shape


- One-pass grinding method applied
- One-pass grinding method applied
- D- Endmill Ball type 2 flutes, 4 flutes,

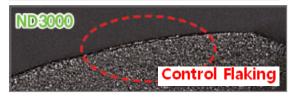
[DBE4000]

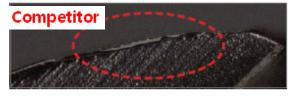
CenterMatch Ball Shape (4 Edges). Shape of Ball point is suitable for high feed machining. Enhanced rigidity and excellent surface finish.

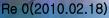
Performance Comparison Example]

1. Reduced flank wear

ND3000 Absorber (Market States) Absorber (Market States) Reduced wear



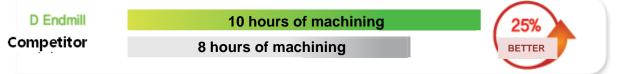

Excellent flank wear resistance
 control wear


ND3000 Surface

ND3000 Coating layer

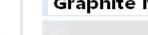
→ Excellent surface adhesion with Flaking control

생산기술연구소 EDBM


We GREATE YOUR TOMORROW! D-ENDMILL (Graphite Machining, Dia coating Endmill)

Machining Example]

Graphite Mold


Cutting conditions : vc = 180m/min, fz = 0.1mm/t, ap=0.2mm, dry machining Tool used : DBE2060-110-N250S06

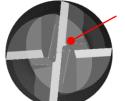
Graphite Mold

Cutting conditions : vc = 300m/min, fz = 0.1mm/t, ap=0.15mm, dry machining Tool used : DBE2060-080-N250S06

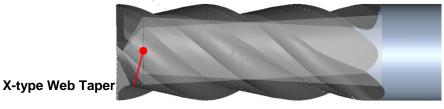
Graphite Mold

- Cutting conditions : vc = 100m/min, fz = 0.11mm/t, ap=0.26mm, dry machining
- Tool used : DBE4060-110-N250S06

D Endmill 8 hours of machining 20% Competitor 6.5 hours of machining

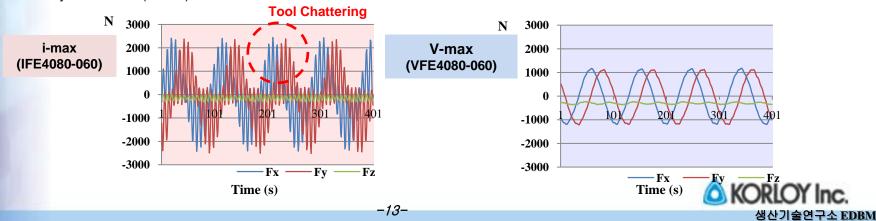

ENDMILL (Irregular Helix Angle Endmit

Irregular Indexing angle


Product Features]

Ellipse Web

- Regular fz per blade and improved rigidity ensuring a stable machining.


X-type Web taper

- Taper and back taper are applied to the ellipse web. It therefore provides the proper flute size for irregular helix and leads to excellent cutting performances.

[Comparison of Cutting Performances]

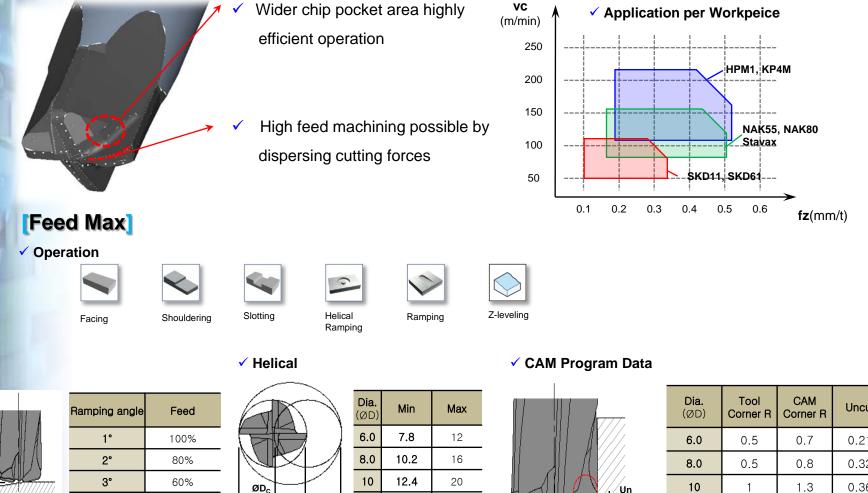
Cutting conditions

- : n=3183.1(min⁻¹), vf=713(mm/min), ae=Slotting, ap=8.0mm
- Measuring equipment
- : Dynamometer (Kistler)

KORLOY Inc.

생산기술연구소 EDBM

WE CREATE YOUR TOMORROW!


V ENDMILL (Irregular Helix Angle Endmill)

Work-piece				Result	
			Tool Life (ea) 80 60 40 20	Expected Tool life 80ea !! 36ea 36ea Fracture VFE4080 IFE4080 Maker	
Name	Tool Holder				
Use	Tool Holder tip pocket			1Wear 2Chip control 3Chipping	
Material	SNCM439	Hardness	H _R C32~35	Tool failure	
	Cutting Conditions				⑤Roughness ⑥Precision ⑦Burr ⑧Etc
Cond.	d. n=6000min ⁻¹ , vc=150m/min, vf=600mm/min, fz=0.025mm/t.				
Machine	ap=7 mm, ae=0.8mm _ Coolant=Water type HASS		Analysis		
Holder	SDC (ER Collet)		1. Higher performance than current tool (Home test)		
Tool	KORLOY	VFE4080 (PC2	15F) _ Ø8/4刃	 2. Improved productivity if applied to the recommended application area of V-max. 3. Results are better than universal endmill but, have to set up a specific target. 	
	KORLOY	IFE4080 (PC2	20) _ Ø8/2刃		

F ENDMILL (Irregular Helix Angle Endmill)

Higher Feed, higher radial depth of cut than standard radius type endmill. High performances by increasing MRR (Material Removal Rate).

Product Features

% In recommended cutting conditions.

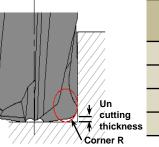
4°

Ramping

Rampin

angle

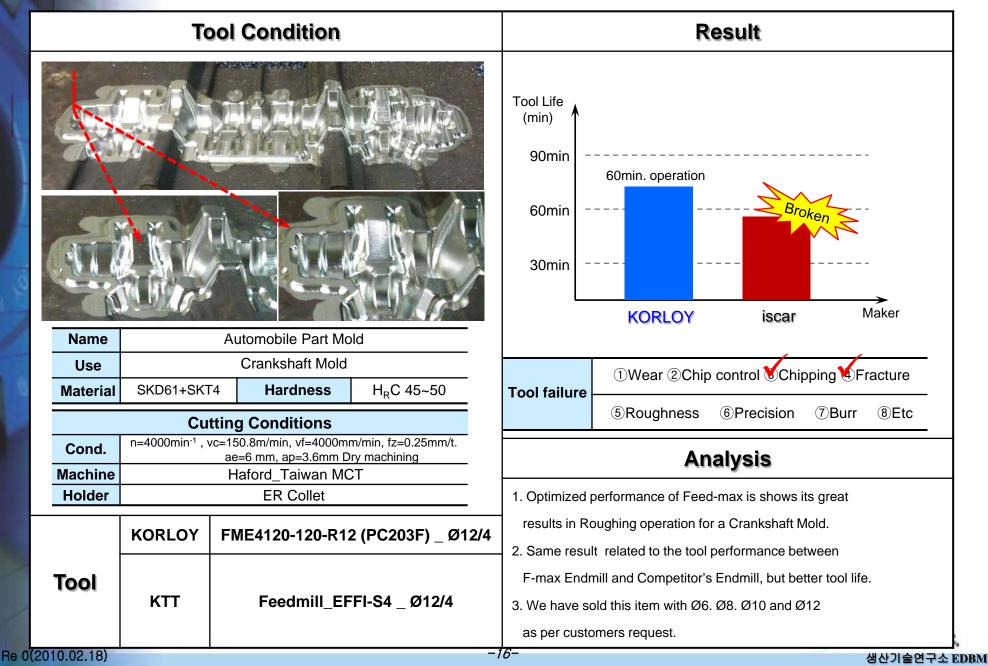
Re 0(2010.02.18)


50%

ØD,

Dia. (ØD)	Min	Max	
6.0	7.8	12	
8.0	10.2	16	
10	12.4	20	
12 14.9 24			
* ØDc : Dia. of tool			

ØDh : Dia. for machining


-15-

Dia. (ØD)	Tool Corner R	CAM Corner R	Uncut	
6.0	0.5	0.7	0.21	
8.0	0.5	0.8	0.32	
10	1	1.3	0.36	
12	1.2	1.6	1.45	

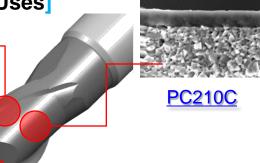
NORLOT IIIC. 생산기술연구소 EDBM

F ENDMILL (Irregular Helix Angle Endmill)

C-Max (Endmill for Copper, Copper Alloy)

Features of Geometry and Uses]

Optimal cutting edge for copper and nonferrous metals machining


Good quality due to high precision of the cutting edge

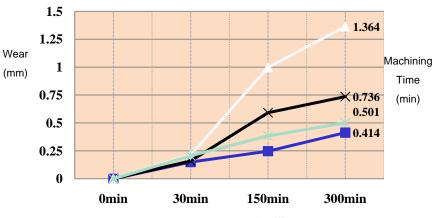
- Superior lubricity, wear&chipping resistance due to the K-Silver coating layer and optimal substrate
- Optimal for machining copper and nonferrous metal
- Wide line up(ball, flat, radius & long neck type)
- Long tool life and good surface roughness when machining electrodes

Machining Example]

- Electrode Machining
- Work piece : Cu (Pure Copper)
- Cutting Conditions : vc=70(m/min), fz=0.083(mm/t), ae=3.0, ap=0.6,
- Designation : CRE4100-070-R10
- ✓Test result

	KORLOY	Competitor 1	Competitor 2
Flank Wear			

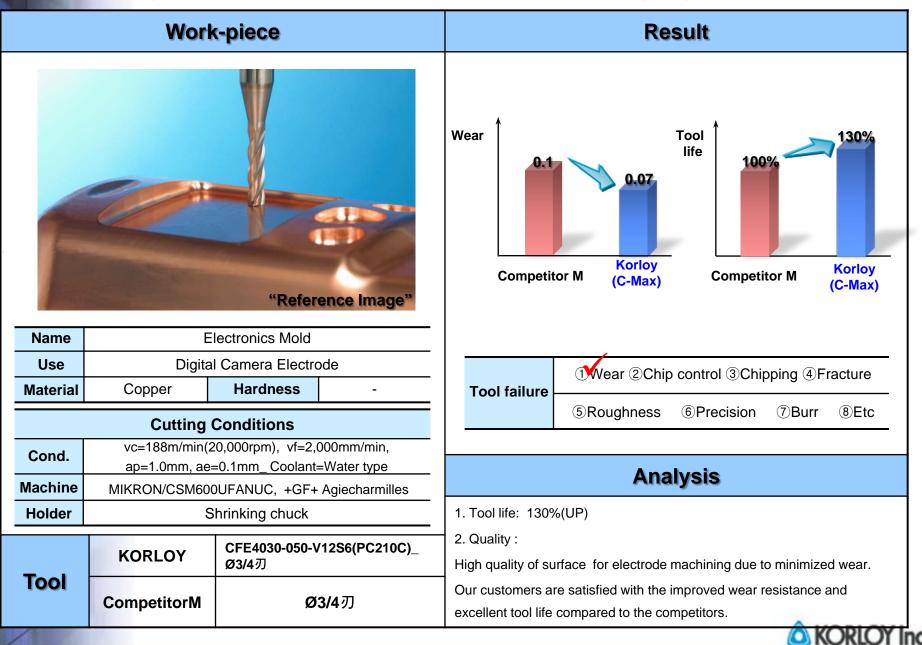
Coating layer(K-Silver)


Enhancing wear resistance

and lubrication

- : Superior lubricity, wear resistance & chipping resistance
- Substrate

Optimal for wear and chipping resistance



생산기술연구소 EDBM

WE CREATE YOUR TOMORROW!

C-Max (Endmill for Copper, Copper Alloys)

-18-

I+ Endmill (Universal & Economic Endmill)

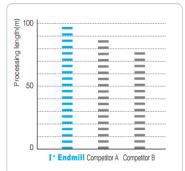
Features of Geometry and Uses

Tough substrate & wear-resistant coating layer

- Improved chipping resistance & tool life by applying an excellent coating layer

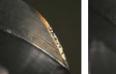
Broad machining area

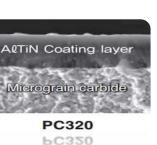
- Applicable for roughing, medium and finishing operations
- Applicable for workpieces of hardness below 45 HrC

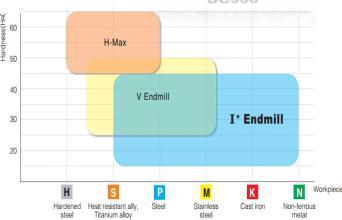

Improvement of productivity

- Excellent cutting performances & cost effectiveness.

Product line up


- IPBE : I Plus Ball Endmill (Φ1~ Φ20)
- IPFE : I Plus Flat Endmill (Φ1~ Φ20)
- IPRE : I Plus Radius Endmill (Φ1~ Φ12)


I* Endmill



Competitor A

Competitor B

• Curring condition : Cutting Diameter=Ø8.0 n(min⁻¹)=5173 vc(m/min)=130.0 vf(mm/min)=1034 fz(mm/t)=0.1

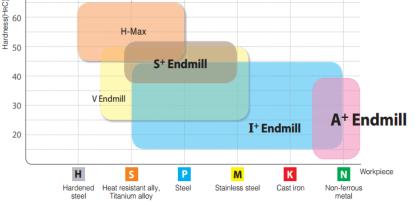
ap(mm)=0.5 ae(mm)=1.6 Dry

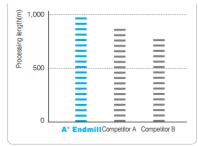
Tool : IPBE2080-060

Re 0(2010.02.18)

-19-

A+ Endmill (Endmill for Aluminum cutting)


[Features of Geometry and Uses]


- Exclusive U-shaped flute
 - Provides excellent chip evacuation even in high feed machining.
 - U shaped and buffed flute reduces the built-up-edges.
- Double relief angle
- Provides high rigidity of cutting edge and in turn ensures high productivity.
- Sharp cutting edge
- Applicable for both roughing and finishing (Shouldering, slotting, ramping etc.)

[Application Area]

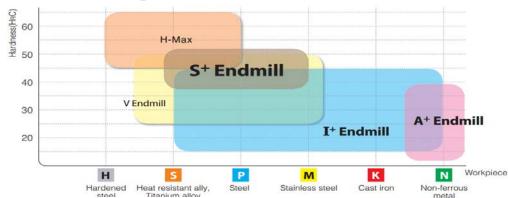
Comparison of Cutting Performances

Competitor B

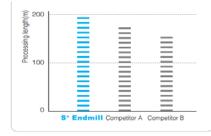
Workpiece : A7075

Curring condition : diameter=Ø8.0, n(min⁻¹)=8000, vc(m/min)=200, vf(mm/min)=1200, fz(mm/t)=0.05

ap(mm)=8, ae(mm)=2.0, wet


S+ Endmill (Endmill for Hard to Cut Materials)

Features of Geometry and Uses


- Strong cutting edge ensuring a longer tool life.
- Special coating with high oxidation resistance
- High rake angle and curvilinear chip pocket allowing better chip evacuation.
- Special cutting edge preventing the hardening of tools.
- Optimal machinability in stainless steel applications
- Applicable for steel, alloy steel and hardening steel machining
- Applicable for multiple cutting operations
 - (Shouldering, Slotting and Ramping etc.)

[Application Area]

[Comparison of Cutting Performances]

· Workpiece : STS304

 Curring condition : diameter=Ø8.0, n(min⁻¹)=4000, vc(m/min)=100, vf(mm/min)=480, fz(mm/t)=0.04 ap(mm)=8, ae(mm)=0.8, dry

· Tool : SPFE4080-060

We create Your Tomorrow 감사합니다.

